Изучаем лампы дневного света

Кратко об особенностях работы ламп

Изучаем лампы дневного света

Строение люминесцентной лампы

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Изучаем лампы дневного света

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Как подключить люминесцентную лампу

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Изучаем лампы дневного света

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Изучаем лампы дневного света

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

https://youtube.com/watch?v=8fF5KQk4L2k

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Двухламповые схемы включения

Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток 2-х ламп никогда не будет равен 0, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа-ПРА

Рисунок 4. Схема с расщепленной фазой

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой (рис. 4). Схема состоит из 2-х элементов-ветвей, отстающей и опережающей. В 1-ой ветви ток отстает по фазе от напряжения на угол 60°, а во 2-ой – опе­режает на угол 60°. Благодаря этому ток во внешней це­пи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0,9-0,95. Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенсированной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности.

При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Последовательное включение люминесцентных ламп, в некоторых практических случаях может возникнуть необходимость в последовательном включении люминесцентных ламп: например, потребуется включить в сеть с напряжением 220 В две лампы мощностью 15 или 20 Вт,
имеющие рабочее напряжение порядка 60 В.

Для последовательного включения должны быть взяты 2 одинаковые по мощности лампы. Не рекомендуется включать последовательно лампы разной мощности, так как рабочий ток у таких ламп неодинаков по величине. В качеств балластного сопротивления может быть использован стандартный дроссель, рассчитанный на суммарную мощность последовательно включаемых ламп.

В схеме на рис. 5а стартеры должны быть взяты на половину напряжения сети, т. е. для сети 220 В стартер выбирается на напряжение 127 В.
Недостаток этой схемы – при несимметричной конструкции стартера возможны случаи их неодновременной работы, что может привести к холодным зажиганиям ламп.

В схеме на рис. 56 предварительный подогрев 2-х катодов ламп осуществляется специальным накальным трансформатором, отключаемым стартером после размыкания его электродов.
В этой схеме используете 1 стартер, рассчитанный на номинальное напряжение сети.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Изучаем лампы дневного света

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

Изучаем лампы дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Изучаем лампы дневного света

Добавить сайт в закладки

У люминесцентной лампы по мере старения наблюдается увеличение ее рабочего напряжения, а у стартера, наоборот, с ростом срока службы напряжение зажигания тлеющего разряда уменьшается. В результат этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет. При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемой им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лампы. Подобные же явления могут иметь место при использовании старых стартеров в сети с пониженным» уровнем напряжения. При появлении миганий лампе необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени контактирования электродов, и оно очень часто недостаточно для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после нескольких промежуточных попыток, что увеличивает длительность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем – невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавливается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от 2-3 ламп, включенных в разные фазы сети.

5. Схемы включения люминесцентных ламп

Для включения люминесцентных
ламп в сеть используют пускорегулирующие
ап-

параты разных видов.

В общем случае в состав
пускорегулирующего аппарата ЛЛ входят
дроссели, стар-

теры, конденсаторы и
резисторы.

Изучаем лампы дневного света

Рис. 17.4. Схемы включения
люминисцентных ламп:

а – стартер; б и в –
соответственно стартерная и
автотрансформаторная схемы

включения; г – схема включения
2-лампового светильника; д – резонансная
схема подключения

Стартер (рис.
17..4, а ) служит
для замыкания (размыкания) цепи пуска
ЛЛ. Его изготовляют в виде стеклянной
колбы 2,в которую впаяны два
стальных электрода 4.
К одному из электродов
приварена биметаллическая пластина 3.

Для подключения стартера
на изоляторе 5 смонтированы алюминиевые
или латун-

ые штыри 6.
В отверстия штырей
заведены концы электродов, и затем штыри
в месте соединения спрессованы.

Рядом с колбой стартера
размещен конденсатор 1.
Все устройство закрыто
алюми

ниевым футля­ром с
изоляционной прокладкой.

Простейшая
схема подключения
ЛЛ
показана на рис. 17.4, б.

В исходном состоянии
сопротивления стартера VKи лампы EL
очень большие. При подаче питания в
стартере появляется тлеющий разряд
между его электродами

и сопротивление стартера
уменьшается. Через обмотки двухкатушечного
дросселя L,
элек

троды лампы и область
тлею­щего разряда стартера протекает
ток прогрева электродов.

Тлеющий разряд вызывает
изгиб биметаллической пластины стартера,
и она замы

кается с электродом. Теперь
сопротивление стартера близко к нулю,
поэтому через элект

роды лампы протекает ток,
прогревающий их до температуры 800-900º
С.

При этом благодаря термоэмиссии
внутри лампы появляется достаточное
число электронов. Из-за отсутствия
тлеющего разряда электроды стартера
остывают и размыка

ются.

Разрыв цепи вызывает всплеск
ЭДС самоиндукции на дросселе, соз­дающей
на элек

тродах лампы импульс высокого
напряжения, под действием которого
происходит иониза

ция аргона и паров ртути
-дампа зажигается.

Теперь сопротивление ЛЛ
мало, но ток лампы и напряжение на ней
ограничены со

противлением последовательно
включенных обмоток дросселя. Стартер
оказывается под пониженным напряжением
и повторно не срабатывает.

Использование дросселя
приводит к снижению коэффициента
мощности соsφ.Для
его повы­шения в схему включается
конденсатор С2, который
при выключении лампы раз

ряжается через резистор R.

Конденсаторы С1
и СЗ
служат для уменьшения
радиопомех, создаваемых старте-

ром.

Наличие стартера – контактного
устройства – снижает надежность работы
ЛЛ.

Схема бесстартерного
пускорегулирующего аппарата

(рис. 17.4, в) собрана
на автотрансформаторе TV
и дросселе L.

Пока лампа не зажглась,
через дроссель течет небольшой ток,
обусловлен­ный доста

точно высоким сопротивлением
обмотки w.
На дросселе существует небольшое падение
напряжения, поэтому к обмотке wтрансформатора
приложено почти все напряжение сети,
которое обес­печивает повышенное
напряжение в обмотках wи
w.

В результате создаются
условия для прогрева электродов и
возникновения эмис­сии. Лампа
зажигается, и ее сопротивление уменьшается.

Теперь через дроссель течет
ток лампы. На дросселе увеличивается
падение напря­жения, а напряжение на
обмотках автотрансформатора уменьшается.
В данной схеме дрос

сель не используется в
процессе зажигания ЛЛ, но выполняет
свою вторую роль – ограни-

чивает напряжение на ЛЛ
после зажигания.

По сравнению с 1-ламповыми
светильниками 2- ламповые (рис. 17.4, г)
более ком

пактны. Лампа ЕL2
включена через
конденсатор С2, по­этому
вектор ее тока опережает вектор тока
лампы Е1. При
этом невидимые мигания
ламп возникают несинхронно. Стро

боскопический эффект можно
уменьшить, подключая светильники данного
помещения в разные фазы 3-фазной сети.

Люминесцентные лампы по
сравнению с ЛН более экономичны, но в
пускорегули-

рующих аппаратах этих ламп
расходуется около 30 %
электроэнергии,
подводимой из се-

ти.

Наиболее простой и
рациональ­ной, с точки зрения минимальных
массы и потерь, является резонанс­ная
схема подключения (рис. 17.4, д),
которая используется
в сетях с ча-

стотой 400 Гц. С помощью
резонансного эффекта, создаваемого
цепью L
– C1,
С2,
в пуско

вой период на лампе возникает
напряжение, в 1,5 – 2,3 раза большее напряжения
сети.

После зажигания лампы
резонанс нарушается включением
сопротивления лампы.

Бесстартерные схемы все же
имеют дополнительные потери, обусловленные
нали-

чием небольшого тока накала
даже после зажигания лампы, но этот
недоста­ток компенси-

руется высокой надежностью
бесстартерных схем и увеличением срока
службы ЛЛ (при-

мерно на 50 %).

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Изучаем лампы дневного света

Дроссель для люминесцентных ламп

Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Изучаем лампы дневного света

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Изучаем лампы дневного света

Выпрямление напряжения осуществляется после чего оно сглаживается параллельно подключенным конденсатором С 1 . После подключения к сети сразу заряжается конденсатор С 4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR 1 и транзисторах Т 1 и Т 2 . При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С 2 , С 3 , L 1 , подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Принципиальное устройство люминесцентной лампы дневного света

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Подключение через современный электронный балласт

Подключение источника света с электронным балластом

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Работа с патроном

Патроны в светодиодных лампах бывают трёх видов. Они отличаются методами крепления к корпусу и проводам, подводящим ток. На каждой детали есть маркировка. Буква означает систему штыревого подключения, а число — расстояние между штырями, измеряющееся в миллиметрах. Для нормальной работы светодиода нужно подключить только один провод к каждому патрону. Поэтому его не нужно демонтировать, достаточно подсоединить по одному кабелю к клеммной колодке.

Изучаем лампы дневного светаОбычно мастера стремятся выполнить всю работу профессионально. В этом помогают специальные клеммные колодки. Они позволяют не изолировать провода, повышают надёжность их подключения. Одна колодка даёт возможность подсоединить сразу несколько мест установки. Если нет возможности приобрести эти детали, то необходимо демонтировать патроны. Старые модели крепят к корпусу винтами. В них провода заводят в отверстия на внутренней стороне и закрепляют. В места присоединения вставляют подпружиненные втулки. Так обеспечивается фиксация лампы между двумя патронами, а также исключается влияние габаритов арматуры конструкции.

В том случае, когда в устройстве два патрона и больше, к одной свободной клемме добавляют ещё одну перемычку. Но у этой схемы есть слабая сторона: если извлечь лампу из элемента, который получает питание, то и остальные светильники погаснут. Это обусловлено тем, что к соседним патронам подходит напряжение сквозь перемычку внутри прибора. Когда провод зажмут с винтами, его дёргают и тянут, так как он может находиться не на клемме и оставаться незакреплённым.

Патроны современных производителей крепят пластиковыми или металлическими пластинами. Для их демонтажа сжимают защёлки друг к другу пинцетом, это позволяет элементу легко выйти из выемки. На одной стороне конструкции находятся плоские пружины. Для подсоединения всех патронов к кабелю, проводящему питание, их соединяют перемычками. Длина крепления зависит от расстояния между соседними элементами. Затем остаётся только смонтировать патроны обратно в светильник и подсоединить провод к колодке для подачи питания. Также подключают и элементы, расположенные на противоположной стороне.

После этого достаточно закрепить светильник на потолке, подключить питание к клеммам на колодке и заменить люминесцентную лампу на светодиодную. На всю работу в неторопливом режиме и без опыта и особых умений уйдёт не более часа.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

Изучаем лампы дневного света

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С 1 , С 2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С 3 , С 4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector